Live: Evolution of biological pathways

Orkun Soyer has just finished his excellent presentation at CoSBi on the use of toy models for understanding the principles that govern biological pathways, in particular signaling pathways. One can obviously imagine several scenarios for how pathways came about:

Evolution vs. intelligent design

The key point, however, is that we might be able to understand something about pathways through computational studies of simple toy models. The toy model discussed throughout the talk was bacterial chemotaxis:

Evolving “chemotaxis” in a computer

The idea is that evolution can to some extend be approximated as an optimization process, in which the objective function corresponds to fitness. In case of the “tumble or swim” problem, computational simulations allowed simple regulatory network to evolve that mimic the food-finding behavior of bacteria.

He also presented an interesting view on how biological complexity has evolved. The idea is to show how complex systems can evolve even if assuming a (weak) selection against complexity:

Modeling the evolution of complexity

I think that his results provide a lot of insight into how real signaling may have evolved, although all the simulations are based on simplistic toy models. I recommend that you download Orkun Soyer’s slides if you want to know more.

This talk ends the Computational and Systems Biology course at CoSBi.

2 thoughts on “Live: Evolution of biological pathways

  1. pedrobeltrao

    Cool work. I still think that a good research direction for this type of work should be to inject more biological details into the simulations. It would make them slower but it would allow bridging molecular properties with circuits and phenotypes.

    Reply
  2. Lars Juhl Jensen Post author

    I fully agree. As much as I liked this work, it is still only evolution of toy models. It would be really cool if one could bring together molecular detail, mathematical modeling, and population genetics in one framework.

    Reply

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s