
Networks, noise and survival in stress

Gábor Balázsi
Department of Systems Biology –

 

U950
The University of Texas M. D. Anderson Cancer Center
Houston, TX 77054, USA

The Microsoft Research -

 

University of Trento
Centre for Computational and Systems Biology
Computational and Systems Biology Course at CoSBi
Wednesday, February 19, 2008 



Networks (Graphs)
•

 
A network (graph)

 
is a system of interconnected 

objects

•
 

Components of a network:

–
 

Nodes (vertices)

–
 

Links (edges) can be:

•

 

Directed

•

 

Undirected
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Examples of networks
Internet

Social network

Protein-protein interaction network

Metabolic network



Network topology: A largeNetwork topology: A large--scale perspectivescale perspective
 (Part I)(Part I)



Gene expression
•

 

Protein:
–

 

Determines phenotype

•

 

DNA:
–

 

Determines genotype

Nucleus

Cytoplasm

Membrane
DNA

RNA RNA

protein

protein

Environment



Connectivity distribution
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Transcriptional regulatory (TR) networks

Gene 1

Gene 2

Gene 3

Maslov

 

& Sneppen, Phys. Biol. 2005



The yeast TR network



Connectivity distribution of TR networks
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Subgraphs
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n = 3 n = 4 n = 0 n = 1 n = 0Abundance of 
3-node 
subgraphs



Subgraphs: some examples
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Subgraph
 

abundance in the E. coli TR network

Subgraph CON DIV CAS FFL BFM

Abundance in
E. coli network

227 4777 160 42 209

Abundance in 
randomized 
network

231.92
± 8.05

4339.3
±

 

132.0
186.69
± 7.08

9.50
± 4.17

74.78
±

 

16.36

Z-score 0.6114 3.3149 3.7682 7.7909 8.2052



Motifs in information-processing networks

R Milo et al., Science 298, 824-827 (2002). 



Hierarchical TR network topology

Layer 0
(Command)

Layer 1

Layer 2

Layer 3

Layer 4
See also
Ma et al., BMC Bioinformatics 5, 199 (2004)
Yu and Gerstein, PNAS 103, 14724 (2006). Balázsi G, Barabási A.-L., Oltvai

 

ZN, PNAS 102, 7841-6 (2005)



The E. coli TR network



The yeast TR network



Types of genes: Commander, Intermediate, Executor

 Commander Intermediate Executor Total 

Number of genes 82 78 1273 1433 

Escherichia coli 

82 + 78 + 1273 = 1433

 Commander Intermediate Executor Total 

Number of genes 31 126 4284 4441 

Saccharomyces cerevisiae 

31 + 126 + 4284 = 4441

Are all three gene types equally responsive and/or noisy?

 Commander Intermediate Executor Total 

Number of genes 34 11 735 780 

Mycobacterium tuberculosis 

34 + 11 + 735 = 780



Definition of origons

Layer 0

Layer 1

Layer 2

Layer 3

Layer 4

See also Ma'ayan

 

et al., Science 309, 1078 (2005) & Balázsi

 

et al., PNAS 102, 7841 (2005)



Origons in the E. coli regulatory network

The set of operons regulated 
directly or indirectly by a node form 
an origon.

Origons are named based on 
their root node.

Why are origons important?

Many nodes serve as sensors, monitoring environmental changes. The 
information captured by the sensor TFs percolate into their origons. 

If we suppose it is possible to perturb only one node in the E. coli TR network (i.e., 
by altering input gene expression or the activity of a transcription factor), primarily 
the nodes within the origon are expected to change their expression levels due to 
transcriptional regulation.

If most of the network is unaffected, only the origon of the perturbed input node 
remains to be analyzed, reducing network complexity.

Origons are more complex than modulons, but less complex than stimulons

If specific origons respond to specific stimuli, then origons are the topological 
units of dynamical network utilization.



The origon network



Microarray data 

•
 

Microarray data were downloaded from: 
https://asap.ahabs.wisc.edu/annotation/php/ASAP1.htm 
http://www.ou.edu/microarray/

•
 

The following data sets are available:
–

 

12+48=50 cDNA experiments
–

 

5+36=41 Affymetrix experiments
–

 

3+38=41 aerobic-anaerobic shift experiments
–

 

104 experiments in various conditions from Oklahoma University



Response to extracellular oxygen
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Significantly affected origons
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Gene Expression NoiseGene Expression Noise
 (Part II)(Part II)

Genetically identical yeast cells
Expressing a fluorescent reporter
Photo by Kevin F. Murphy

 

(Boston U)



Measuring noise
Noise =

Coeff. of variation =

CVR =

STD/mean

Noise strength =

Fano

 

factor =

f =

Var/mean

μ
σ

μ
σ 2

Ozbudak

 

et al., Nat. Gen. 31, 69 (2002)

Blake et al., Nature 422, 633 (2003)

Raser

 

& O’Shea, Science 304, 1811 (2004)

Elowitz

 

et al., Science 297, 1183 (2002)

Colman-Lerner et al., Nature 437, 699 (2005)

Becskei

 

et al., Nat. Gen. 37, 937 (2005)

μ σ

Noise = CV = σ/μ



A simple example: birth-death process

P
k γ γ=ln(2)/τ

τ: half-life
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Stochastic Processes in Physics and Chemistry (North-Holland Personal Library) by N.G. Van Kampen
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Steady-state: birth-death process

k=0.1 k=10 k=1000

γ=ln(2)/6

γ=ln(2)/60

γ=ln(2)/600
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Stochastic simulation: birth-death process
k=0.1 k=10 k=1000

γ=ln(2)/6

γ=ln(2)/60

γ=ln(2)/600



Gene expression models
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et al. Nat. Rev. Genet. 
6, 451-464 (2005)



Sources of noise

Process #1:
Promoter binding

(DNA)

Process #2:
Transcription

(mRNA)

Process #3:
Translation
(Protein)
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Noise at the promoter:
 Random Telegraph Process
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Promoter dynamics affects noise
Promoter

Eukaryotes
Prokaryotes
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Eukaryotes

Prokaryotes

Basal expression affects noise
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Eukaryotes
Prokaryotes

mRNA birth/death affects noise
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Eukaryotes

Prokaryotes

Protein birth/death affects noise
Promoter

M PA

N

kA

kPkM

γM γPγA kB

M
ea

n
S

ta
nd

ar
d 

de
v.

N
oi

se

mRNA Protein



Noise and negative feedback

Becskei

 

et al.,

 

Nature 405, 590 (2000). 
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Survival and evolution in a Survival and evolution in a 
changing environmentchanging environment

 (Part III)(Part III)



Evolutionary theory

•
 

Evolution is the process through 
which the heritable traits of a 
biological population change from 
one generation to the next.

-Charles Darwin: The Origin of Species (1859)

-Gregor

 

Mendel: Experiments on Plant Hybridization (1866)

-Population Genetics (1900-1930)

-Modern Synthesis: Fisher, Haldane, Wright, Huxley, Mayr

 

(1930-1950)

-Neutral Theory: M. Kimura (1960-1980)



Requirements for evolution under selection

1. Variation:
-Genetic
-Non-genetic

2. Selection:
-Fitness + Competition
-Survival

3. Heritability:
-Genetic
-Non-genetic

•

 

Phenotype:
–

 

Observed quality (size, color, shape, ...)
–

 

Subject to selection

•

 

Genotype:
–

 

DNA sequence
–

 

Not directly selected
–

 

Makes phenotypes heritable

This is the textbook-understanding, focusing on multicellular

 

species.



Sources of cell-cell variation
•

 
Variation is required for evolution

•
 

The source of phenotypic variation can be:
–

 
Genetic

•
 

Gene mutations (amplifications,deletions, insertions,…)
–

 
Epigenetic

•
 

DNA methylation
•

 
Chromatin modification

–
 

Non-genetic (NOISE)
•

 
Low intracellular concentrations



Heritability of cellular phenotypes
•

 
Heritability is required for evolution

•
 

The source of heritability can be:
–

 
Genetic

•
 

Gene mutations (amplifications,deletions, insertions,…)
–

 
Epigenetic

•
 

DNA methylation
•

 
Chromatin modification

–
 

Non-genetic (CELLULAR MEMORY)
•

 
Positive feedback

Protein

Gene Protein

dP
/d

t

dP/dt=F(P)-P



Evolution at the single-cell level

Selection

Heritability

Genetic 
variation

Environmental 
variation

Selection

Heritability

Genetic 
variation

Environmental 
variation

Stochastic 
variation

Multicellular
 organisms

Single cells

Generation time:
Years Minutes

Eff. population size:
~100 >106

Reproduction:
Sexual Asexual

HeritableHeritable

 

variationvariation
Only geneticOnly genetic Genetic+ Genetic+ 

nonnon--geneticgenetic

Differences

-Genome-scale data available (yeast & E. coli)
-Easy to manipulate genetically



CELLULAR MEMORY and NOISE
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Cellular memory:
-The capacity of cell lineages to maintain deviant states non-genetically over time.
-It is the inverse of the rate of switching between phenotypic states (1/τ)

Noise:
-Quantifies non-genetic deviations from the population mean
-Measured by the Coefficient of Variation (CV, standard deviation

 

/ mean)

τ

μ σ

Noise = CV = σ/μ

How do they affect survival and evolution at the single cell level?



Noise and phenotypeNoise and phenotype

•
 

To study the phenotypic effect of noise, we 
need to control it experimentally

•
 

Controlling noise also affects other cellular 
properties (e.g., gene expression mean)

•
 

Therefore, we need to uncouple the 
control of noise from the control of mean

Photo by Kevin F. Murphy



The TetR-repressible GAL1 promoter
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Changing noise affects the mean
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We can change the noise…

 
but the mean changes as 
well!!!

Blake WJ, Balázsi G, Kohanski

 

MA, Isaacs FJ, Murphy KF, Kuang

 

Y, Cantor CR, Walt DR, Collins JJ, Mol Cell 24, 853-865 (2006).
Murphy KF, Balázsi G, Collins JJ, PNAS 104, 12726-31 (2007)



Uncoupling the noise and the mean

TetR
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Method #1 Method #2

See also:
-Smith, Sumner & Avery, Mol. Microb. 2007
-Maamar, Raj & Dubnau,

 

Science 2007
-Süel et al., Science 2007

-The goal of these methods is to establish 
different dependence of the noise on the 
mean

-Method #1 consists of mutating the TATA 
box, decreasing the rate of promoter 
inactivation

-Method #2 consists of changing the 
number of repressor binding sites

-Mathematical models accompany both 
methods



Independent control of the noise 
and the mean
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Noise and drug resistance

Drug Drug



Controlling drug resistance noise
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Noise aids survival
 during drug treatment

wt wt

Blake WJ, Balázsi G, Kohanski

 

MA, Isaacs FJ, Murphy KF, Kuang

 

Y, Cantor CR, Walt DR, Collins JJ, Mol Cell 24, 853-865 (2006)
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Thank you!
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